
1

Capabilities as First-Class Modules
with Separate Compilation

Jam Kabeer Ali Khan
Advisor: Prof. Bruno C. d. S. Oliveira

q Language Features

Ø Arithmetic (+, -, ..), Boolean (&&, ||,

..) and Comparison (>, >=, ..)

operators.

Ø Supported Types: Int, Bool, String,

Unit, A -> A, {l : A}, A & A, A

|| A, List A, Sig[A, B]

Ø Type Aliases

Ø First-Class Environments

Ø First-Class Modules and Functors

Ø Capabilities (@resource vs. @pure

modules)

Ø Sandboxing

Ø Conditionals and Switch Statements

Ø Anonymous and First-Class Functions

Ø Let and Letrec expressions

Ø Recursion

Ø Tuples, Lists and Records

Ø Algebraic Data Types & Pattern Matching

Ø Separate Compilation

*** Implementation File (.ep) ***

@pure module Factorial

function factorial(n: Int, dec : Int -> Int)
: Int {
 if (n == 0)
 then 1
 else { n * factorial(dec(n), dec) }
};

*** Interface File (.epi) ***

@pure interface Factorial

function factorial : Int -> (Int -> Int) ->
Int

q Further Work
Ø Formalization of Separate Compilation & Linking.
Ø Extension with modular subtyping.
Ø Formalization of Authority-Safety Proof.

qWhat are First-Class Environments?
Ø Environments: Mapping of variables and values at

runtime!
Ø First-class? Programmer can create, pass and

reify environments at runtime!

q What are Capabilities?
Ø Used to introduce access control with resources

passed as parameters rather than direct imports.

q What is Separate Compilation?
Ø OCaml has interface files! C++ has header files.

Ø Compiling without implementation of imports.

o Challenge: Capabilities without objects?
ü Solution: First-class Environments & Sandboxing

o Challenge: Separate Compilation and Linking directly in the core?
ü Solution: First-class Environments & Dependent merges!

--------------------- ENVCAP ------------------------

q Type-directed Elaboration ENVCAP to 𝝀𝑬

qRocq Formalization

q ENVCAP Syntax

q Extended Abstract q GitHub

