CPU-PCGCN: Efficient Processing of Convolutional Graph Networks on CPU Architectures

Nicolás Meseguer-Iborra, José L. Abellán and Manuel E. Acacio

University of Murcia, Spain

Objective

This work introduces CPU-PCGCN, an implementation of PCGCN [1] using the CPU, achieving up to 3.94 times speed increase compared to the base GCN implementation.

Introduction

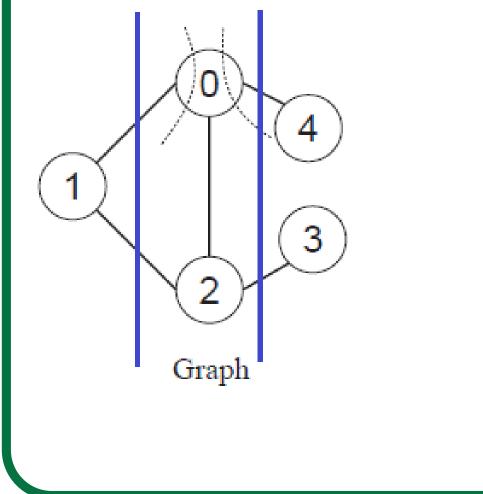
The acceleration in GCNs is mainly achieved due to: 1) Partitioning of the graph [2] and 2) Determination of the edge-blocks and their sparsity. Once processed, we will employ a dual computation method. Depending on the spar-

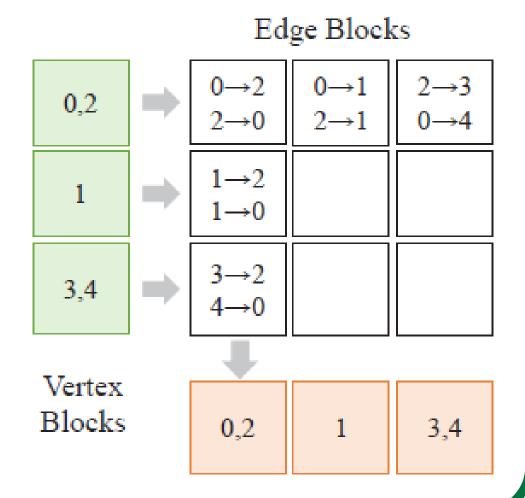
GNNs and GCNs

Graph Neural Networks

Two phases: Aggregation, collecting the features of neighboring vertices, and Combination, the new vertex features are updated using a DNN.

sity we will compute using either a sparse or a dense algorithm.

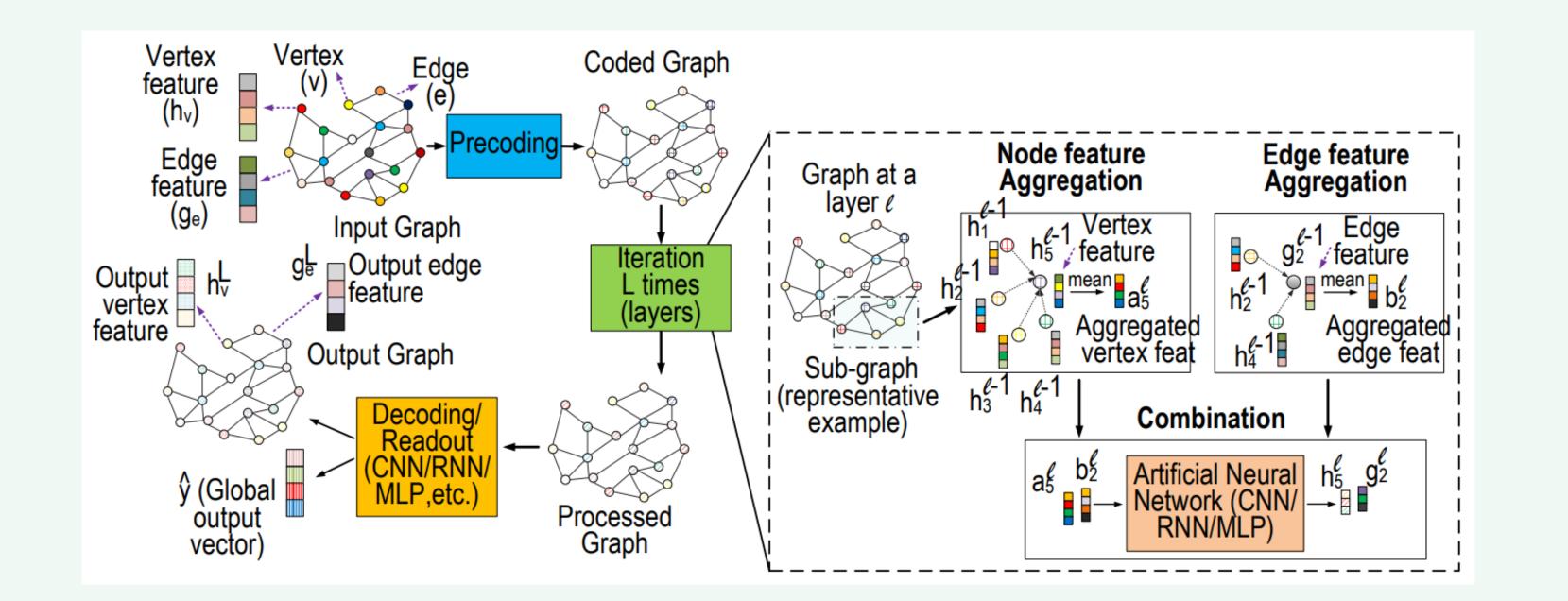




CPU-PCGCN Algorithm

Symbols: input graph: G = (V, E), layers: l = $\{1, ..., L\}$, subgraphs: $\{S_k = (V_k, E_k, SS_k) | k =$ $1, \ldots, K$, vertices in subgraph k: V_k , edges in subgraph k: E_k , sparsity of the subgraph k: SS_k , edges between subgraph *i* and *j*: $E_{i,j}$, features of layer *l*: h^{l} (h^{0} indicates the input features), weight of layer $l: w^l$

Graph Convolutional Networks

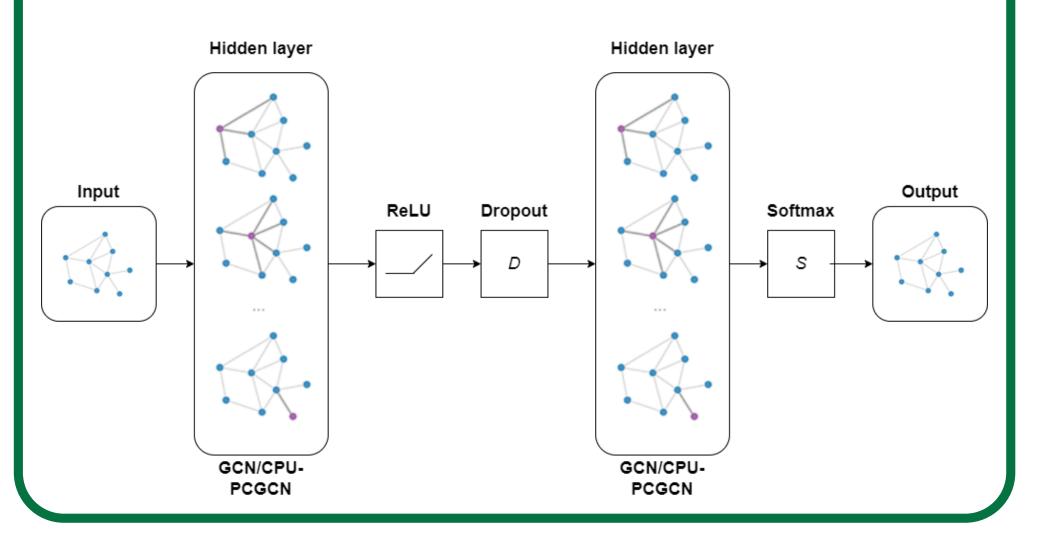


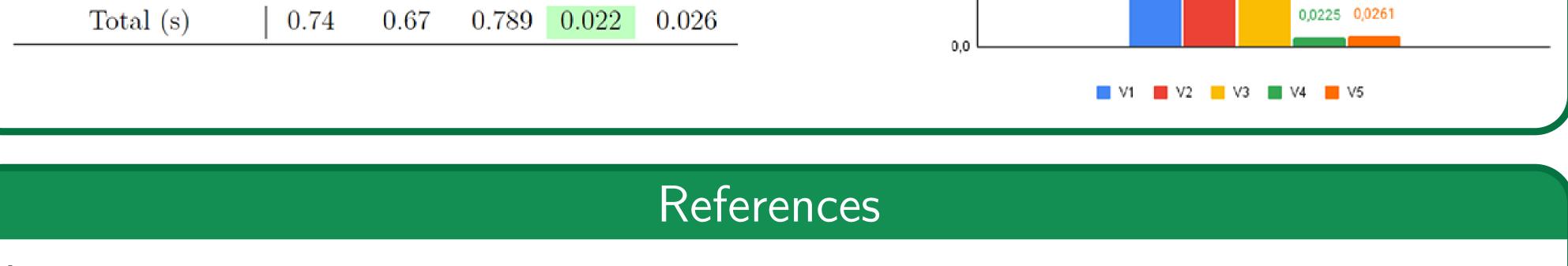
A single convolution transforms and aggregates information from neighbouring nodes. However they face two limitations: 1) Identity Matrix A and 2) Symmetric Normalization

between subgraph i and $j: E_{i,j}$, features of layer $l: h^l$ (h^0 indicates the input features), weight of layer $l: u^l$		
<i>l</i> : w^l nsure: Partition $G \rightarrow \{S_k k = 1,, K\}$	1250	
// calculate a L layer CPU-PCGCN model	Datasets #vertex #edge #feature #label clustering coefficient	

$$\frac{|\nabla r|^{2}}{|\nabla r|^{2}} = \frac{|\nabla r|^{2}}{|\nabla$$

CPU-PCGCN. Both layers are architecturally identical but differ in how they compute input parameters. The first layer operates on the complete graph in a compressed format, while the second layer works on partitions generated from the graph, also in a compressed format.





- Chao Tian, Lingxiao Ma, Zhi Yang, and Yafei Dai. Pcgcn: Partition-centric processing for accelerating graph convolutional network. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 936–945, 2020.
- George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM [2]JOURNAL ON SCIENTIFIC COMPUTING, 20(1):359–392, 1998.

Acknowledgments

work was supported by grants TED2021-130233B-C33 and RYC2021-031966-I both funded by This MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. Nicolás Meseguer was supported by grant 21803/FPI/22 from Fundación Séneca.