
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Capabilities as First-Class Modules with Separate Compilation
Jam Kabeer Ali Khan

jamkhan@connect.hku.hk

The University of Hong Kong

Hong Kong SAR, China

ABSTRACT
We present ENVCAP, a statically typed programming language

based on environment-based semantics that supports first-class
environments, capabilities, and separate compilation. By uti-

lizing the environment-based semantics of 𝜆𝐸 [15], ENVCAP mod-

els capabilities [5] as first-class modules [15], as an alternative to

the object-capability model [12], and enables separate compilation

without extra-linguistic structures such as linksets [2].

1 PROBLEM & MOTIVATION
Programming language implementations often use environments—

maps of bindings and values—for efficiency, while theoretical calculi

rely on substitution, weakening the correctness guarantees of im-

plementations. Environment-based semantics [4, 8, 14, 15] address

this gap by incorporating environments into formal calculi, en-

abling first-class environments—environments as values that can be

manipulated. This approach provides a foundation for addressing

two key problems in language design and implementation: (1) ca-

pabilities are commonly modeled as objects [5], which introduces

complexity due to object-oriented calculi, making reasoning about

and implementing capabilities challenging; and (2) traditional ap-

proaches to separate compilation rely on external structures, such

as linksets [2], which are not part of the core language.

ENVCAP is the first programming language to address these

problems by providing two key solutions based on first-class envi-
ronments:

(1) Capabilities as First-Class Modules: ENVCAP models

capabilities as first-class modules [15] using first-class en-
vironments, offering a simpler alternative to the object-

capability model [12].

(2) Separate Compilation: ENVCAP enables separate com-

pilation entirely within the core 𝜆𝐸 language, eliminating

the need for extra-linguistic structures such as linksets.

2 BACKGROUND & RELATEDWORK
The 𝜆 calculus relies on substitution-based semantics, where beta-

reduction replaces terms during application. This approach is ineffi-

cient in practice and challenging to formalize due to issues like name

capture. Environment-based semantics address these limitations by

integrating environments—maps of bindings and values—directly

into the formalization, aligning with implementation practices. The

𝜆𝐸 [15] and 𝐸𝑖 [14] calculi formalize this approach, unifying ex-

pressions and environments to enable first-class environments and

introducing the box construct 𝑒1 ▷ 𝑒2, which evaluates 𝑒2 under

environment 𝑒1, allowing for modeling capabilities as first-class
modules.

Capabilities [5] enforce access control, commonly implemented

using the object-capability model in programming languages such

as Newspeak [1] and Wyvern [7, 11]. As their name implies, ca-

pabilities are primarily designed to restrict access to resources.

When modeled as first-class modules, capabilities can be passed as

arguments, effectively granting access to specific resources. Tan

and Oliveira [15] proposed sandboxed first-class modules as an

alternative, where sandboxed modules restrict access to the global

environment by requiring all dependencies to be explicitly passed

as arguments, allowing to model capabilities. In addition, most

capability-based languages lack formalization for separate compila-

tion, which is essential to maintain authority control.

Separate compilation enables programs to type-check and com-

pile based on interfaces rather than implementations. Cardelli [2]

introduced linksets as a formal framework for separate compila-

tion, later adapted by Standard ML [13]. In this framework, linksets
provides a structure to link code components post-compilation, for-

malized through a simple module system called bindings. However,
linksets are extra-linguistic—they are not part of the core language

and lack concrete syntax, complicating implementation.

A simpler and more generalized solution could leverage core lan-

guage constructs, where program fragments act as abstractions over

interfaces, and interfaces are unified with types [14]. For instance,

if component 𝐴 is imported by component 𝐵, it can be represented

as 𝜆(interface 𝐴) .𝐵. Using first-class environments in 𝜆𝐸 , ENVCAP

enables separate compilation within the core language, eliminating

the need for extra-linguistic mechanisms. Additionally, Cardelli’s

framework lacks support for first-class modules. This work extends

Cardelli’s framework by replacing linksets with constructs from the

𝜆𝐸 calculus, offering a more expressive and streamlined solution.

3 APPROACH & UNIQUENESS
The semantics of ENVCAP are derived from 𝜆𝐸 via elaboration and

syntax design is inspired by OCaml [9], Wyvern [7, 11], and 𝜆𝐸 .

Fragment 𝑈 ::= program ⟨𝑆, 𝐼 , 𝑅, 𝐸, 𝐴⟩
Authority 𝑆 ::= @pure | @resource

Import 𝐼 ::= · | import 𝑙 : 𝐴, 𝐼

Requirements 𝑅 ::= · | require 𝑙 : 𝐴, 𝑅
Expressions 𝐸 ::= env | 𝐸.𝑛 | 𝑖 | 𝜖 | 𝜆𝐴. 𝐸 | with 𝐸1 in 𝐸2

| 𝐸1 𝐸2 | 𝐸1;𝐸2 | 𝐸1, 𝐸2 | {ℓ = 𝐸} | 𝐸.ℓ
| function ℓ 𝐴 : 𝐵 𝐸 | struct 𝐴 𝐸 | 𝑠𝑡𝑟𝑢𝑐𝑡 𝐸
| 𝐸1 ∗ 𝐸2 | functor ℓ 𝐴 : 𝐵 𝐸 | module ℓ : 𝐵 𝐸

| let 𝑥 𝐸1 | open 𝐸1 𝐸2 | 𝐸 : 𝐴

Types 𝐴, 𝐵, Γ ::= Int | 𝜖 | 𝐴 → 𝐵 | {ℓ : 𝐴}
| 𝐴&𝐵 | Sig[𝐴, 𝐵]

Figure 1: Core ENVCAP syntax.

1

Jam Kabeer Ali Khan

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

3.1 Syntax & Design
Figure 1 presents the core syntactic constructs of ENVCAP and

we discuss the most relevant constructs. A fragment (program
𝑆 𝐼 𝑅 𝐸 𝐴) represents an implementation paired with an in-

terface 𝐴, where interfaces desugar into types. First-class modules

include struct 𝐴 𝐸 (taking 𝐴 as input) and struct 𝐸 (syntac-

tic sugar for 𝐸). The construct module ℓ : 𝐵 𝐸 desugars into a

record {ℓ = 𝐸 : 𝐵}, while functor ℓ 𝐴 : 𝐵 𝐸 desugars into

{ℓ = struct 𝐴 (𝐸 : 𝐵)}. Module application (𝐸1 ∗ 𝐸2) requires 𝐸1
to have type Sig[𝐴, 𝐵]. The open 𝐸1 𝐸2 construct requires 𝐸1 to

be of record type and loads its contents into the current context via

elaboration. The reification operator env retrieves the current envi-

ronment. Sequences 𝐸1;𝐸2 elaborate to dependent merges (𝑒1 , 𝑒2)
in 𝜆𝐸 , which is helpful to model a sequence of declarations, e.g.

{𝑥 = 1} , {𝑦 = 𝑥 + 𝑥}, allowing 𝐸2 to depend on 𝐸1. Pairs (𝐸1, 𝐸2)
are non-dependent and generalized to support tuples, but elaborate
to 𝑒1 , 𝑒2 in 𝜆𝐸 . The construct function ℓ 𝐴 : 𝐵 𝐸 elaborates into

fix 𝐴 → 𝐵.𝐸, enabling recursion.

3.2 First-class Environments & Modules
We illustrate first-class environments and modules with an example.

First, we define a@pure fragment with𝑈𝑇𝐼𝐿 and𝑀𝐴𝑇𝐻 interfaces:

1 @pure module Example1

2 interface UTIL {val diff : Int};

3 interface MATH {val fact : Int -> Int};

Next, we define a functor (a parameterized module) that desug-

ars into a labeled record with an anonymous first-class module

(𝑠𝑡𝑟𝑢𝑐𝑡 𝐴 𝐸):

1 functor math (util: UTIL) : MATH {

2 (* loads contents into environment , e.g. diff *)

3 open util;

4 function fact(n: Int): Int {

5 if (n == 0) then 1 else n * fact(n - diff)

6 }

7 };

Finally, we use the𝑤𝑖𝑡ℎ 𝐸1 𝐸2 construct to evaluate 𝐸2 in envi-

ronment 𝐸1. We create a new environment containing the current

environment (extracted via the 𝑒𝑛𝑣 operator), the result of applying

the 𝑚𝑎𝑡ℎ functor to an anonymous module of type 𝑈𝑇𝐼𝐿, and a

new binding for 𝑥 . The computation proceeds under this new envi-

ronment, computing factorials for both the old and new values of

𝑥 :

1 let x = 5;

2 with

3 ({ prevEnv = env}; math(struct {let diff = 1}); {x = 6})

4 in { let resultOld = fact(prevEnv.x); (* 120 *)

5 let resultNew = fact(x) (* 720 *)}

This example demonstrates ENVCAP’s support for first-class
modules and environments, showcasing its expressive power.

3.3 Capabilities as First-Class Modules
Capabilities in ENVCAP are modeled using sandboxed first-class
modules, which enforce controlled access by requiring all re-

sources to be explicitly passed as parameters, and authority an-
notations (@pure and @resource) inspired by Wyvern [11]. The

modules are sandboxed via elaboration to 𝜖 ▷ 𝜆𝐴.𝑒 in 𝜆𝐸 , so com-

putation runs under 𝑒𝑚𝑝𝑡𝑦 (𝜖) environment and hence, resources

are only passed via parameters. A @resource fragment can im-

port any fragment, while a @pure fragment can only import other

@pure fragments. If a @pure fragment requires functionality from

a @resource fragment, it must declare it as a requirement rather

than an import, ensuring explicit capability propagation. ENVCAP

supports the use of interface files in requirements, so interfaces of

required fragments can be utilized for separate compilation. Only

valid imports are linked and the validity of imports with author-

ity annotations is checked during elaboration to 𝜆𝐸 , maintaining

authority control.

We present an example of how capabilities are propagated in

ENVCAP, consisting of a pure fragment B and a resource fragment

A.

1 @pure module B

2 require (U: System.Utils);

3 let mapList =

4 U.Map(\(x:Int) => {x + 1}, [1, 2, 3])

Fragment B is a @pure module requiring System.Utils as a ca-

pability. Since System.Utils is a resource, it cannot be imported

directly. Instead, it is passed as a parameter, ensuring explicit capa-

bility propagation.

1 @resource module A

2 import System.Utils B;

3

4 let result = B(System.Utils).mapList

Fragment A, a @resource module, imports System.Utils and
instantiates B with it. The mapList function is extracted and as-

signed to the result. Here, System.Utils acts as a capability: A

has the authority to access and pass it to B, which requires this

capability.

3.4 Separate Compilation with Unified Types
and Interfaces

We enable separate compilation by unifying interfaces and types,

where an implementation file is treated as an abstraction over the

interfaces of its imports at the core level of 𝜆𝐸 . The linking mech-

anism is also defined at the core level, eliminating the need for

external structures.

3.4.1 Example. To illustrate this, we adapt one of Cardelli’s exam-

ples [2] in ENVCAP. For clarity, we present an example within a

single file.

1 @pure module Example3

2 interface N { val x : Int };

3 module n : N {

4 let x = 3

5 }

n is a module that implements interface N. Next, we define a
functor m that implements interface M and takes an implemen-

tation of N as input; this is similar to an import at the fragment
level.

1 interface M {

2 val f : Int -> Int;

3 val m : Int

4 };

5 functor m (n: N) : M {

6 open n;

7 let f = \(y: Int) => y + x;

8 let m = f(x)

2

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Capabilities as First-Class Modules with Separate Compilation

9 }

In this example, the functor𝑚 represents a program fragment

that imports the module 𝑛 with the interface 𝑁 . In ENVCAP, inter-

faces are treated as types, so 𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒 𝑁 and 𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒 𝑀 desugar

into record types {𝑁 : {𝑥 : 𝐼𝑛𝑡}} and {𝑀 : {𝑓 : 𝐼𝑛𝑡 → 𝐼𝑛𝑡}&{𝑚 :

𝐼𝑛𝑡}}, respectively.

3.4.2 Compilation: ENVCAP{ 𝜆𝐸 . In our setting, the elaboration

from ENVCAP to 𝜆𝐸 is analogous to Cardelli’s compilation of bind-

ings to linksets. Modules and functors elaborate into records and

boxed abstractions. In this example, specifically:

𝑚𝑜𝑑𝑢𝑙𝑒 𝑛 : {𝑛 : {𝑥 : 𝐼𝑛𝑡}} { {𝑛 = {𝑥 = 3} : {𝑥 : 𝐼𝑛𝑡}}

𝑓 𝑢𝑛𝑐𝑡𝑜𝑟 𝑚 : {𝑚 : 𝑠𝑖𝑔[{𝑛 : {𝑥 : 𝐼𝑛𝑡}}, {𝑓 : 𝐼𝑛𝑡 → 𝐼𝑛𝑡}&{𝑚 : 𝐼𝑛𝑡}]}

{ {𝑚 = 𝜖 ▷ 𝜆{𝑛 : {𝑥 : 𝐼𝑛𝑡}.(𝑓 = ..,𝑚 = (?.𝑓) (?.𝑛.𝑥)) : 𝑡𝑦𝑝𝑒..}

For simplicity, we omit the elaboration of the open (given in

Figure 2) statement, which essentially loads the contents of module

𝑛 ({𝑥 = 3}) into the environment.

3.4.3 Linking. Once elaborated to 𝜆𝐸 , the expressions can be linked.
To ensure correct linking order, we use Kahn’s [6] algorithm for

topological sorting to determine module dependencies and linking

order. It enables the detection of cyclic dependencies that are not

allowed in ENVCAP for both imports and requirements for the sake

of simplicity. The linking process proceeds as follows.

(1) Initial State: 𝐿 ≡ 𝜖 .

(2) Link n: 𝐿 ↩→ 𝐿′ ≡ 𝜖 , {𝑛 = {𝑥 = 3} : {𝑥 : Int}}.
(3) Link m: 𝐿′ ↩→ 𝐿′ , {𝑚 = 𝜖 , {𝑛 = {𝑥 = 3}} ▷ (𝑓 = .. ,𝑚 =

(?.𝑓) (?.𝑛.𝑥)) : {𝑓 : Int → Int}&{𝑚 : Int}}.
When no further linking steps are possible (𝐿 ↩̸→), the resulting

structure, with dependent merges (,), contains fully linked frag-

ments that can be executed individually.

4 RESULTS & CONTRIBUTIONS
The main results achieved are the following: 1) Implementation

of the ENVCAP interpreter in Haskell[10]; 2) Formalization of

type-directed elaboration 𝐸𝑁𝑉𝐶𝐴𝑃 { 𝜆𝐸 in Rocq [16].

4.1 Implementation
The ENVCAP interpreter, implemented in ∼5000 lines of Haskell,
supports recursion, algebraic datatypes, and other key features. Its

architecture comprises parsing, locally nameless transformation,

desugaring, elaboration, and execution. The locally nameless repre-

sentation [3] simplifies implementation by avoiding ambiguous en-

vironment lookups, which 𝜆𝐸 forbids. Furthermore, the interpreter

produces .epc files containing 𝜆𝐸 expressions, enabling indepen-

dent linking and execution, ensuring flexibility by decoupling from

specific code generation.

4.2 Meta-theory
Type-directed elaboration translates 𝑐𝑜𝑟𝑒 ENVCAP to 𝜆𝐸 expres-

sions while preserving type consistency. Currently, the proof ex-

cludes the compilation of fragments of the form program ⟨𝑆, 𝐼 , 𝑅, 𝐸, 𝐴⟩;
the key elaboration rules are shown in Figure 2.

EL-MODULE

𝜖 & 𝐴 ⊢ 𝐸 : 𝐵 { 𝑒

Γ ⊢ struct 𝐴 𝐸 : Sig[𝐴, 𝐵] { 𝜖 ▷ 𝜆 |𝐴|.𝑒

EL-MODAPP

Γ ⊢ 𝐸1 : Sig[𝐴, 𝐵] { 𝑒1 Γ ⊢ 𝐸2 : 𝐴 { 𝑒2

Γ ⊢ 𝐸1 ∗ 𝐸2 : 𝐵 { 𝑒1 𝑒2

EL-CLOS

Γ ⊢ 𝐸1 : Γ1 { 𝑒1 Γ1&𝐴 ⊢ 𝐸2 : 𝐵 { 𝑒2

Γ ⊢ ⟨𝐸1, 𝜆𝐴.𝐸2⟩ : 𝐴 → 𝐵 { 𝑒1 ▷ 𝜆 |𝐴|.𝑒2

EL-NON-DEPENDENT-MERGE

Γ ⊢ 𝐸1 : 𝐴1 { 𝑒1 Γ ⊢ 𝐸2 : 𝐴2 { 𝑒2

Γ ⊢ 𝐸1, 𝐸2 : 𝐴1 & 𝐴2 { (𝜆 |Γ |.(0 ▷ 𝑒1) , (1 ▷ 𝑒2)) ?

EL-OPEN

Γ ⊢ 𝐸1 : {ℓ : 𝐴} { 𝑒1

Γ ⊢ 𝐸1 .𝑙 : 𝐴 { 𝑒1 .𝑙 Γ&𝐴 ⊢ 𝐸2 : 𝐵 { 𝑒2

Γ ⊢ open 𝐸1 𝐸2 : 𝐵 { (𝜆 |𝐴|.𝑒2) (𝑒1 .𝑙)
where |.| is simply translation of ENVCAP types to 𝜆𝐸 types.

Figure 2: Elaboration: Γ ⊢ 𝐸𝑁𝑉𝐶𝐴𝑃 : 𝐴 { 𝜆𝐸

The theorems formalized in Rocq are the following:

Theorem 1 (Type Preservation).

𝑖 𝑓 Γ ⊢ 𝐸 : 𝐴 { 𝑒 , 𝑡ℎ𝑒𝑛 |Γ | ⊢ 𝑒 : |𝐴|.

Theorem 2 (Uniqeness of Type Inference).

𝑖 𝑓 Γ ⊢ 𝐸 : 𝐴1 { 𝑒1 𝑎𝑛𝑑 Γ ⊢ 𝐸 : 𝐴2 { 𝑒2 , 𝑡ℎ𝑒𝑛 𝐴1 ≡ 𝐴2 .

Theorem 3 (Uniqeness of Elaboration).

𝑖 𝑓 Γ ⊢ 𝐸 : 𝐴1 { 𝑒1 𝑎𝑛𝑑 Γ ⊢ 𝐸 : 𝐴2 { 𝑒2 , 𝑡ℎ𝑒𝑛 𝑒1 ≡ 𝑒2 .

Significance. ENVCAP presents first-class modules as an alterna-

tive to objects and enables separate compilation without external

constructs, such as linksets. This simplifies the implementation of

programming languages by providing simpler alternatives using

first-class environments and environment-based semantics.

5 ONGOING AND FUTUREWORK
The Envcap project aims to formalize separate compilation in Rocq,

based on Cardelli’s framework. Inspired by Wyvern, it enforces

authority safety for capability guarantees. To enhance modularity,

it introduces subtyping support, enabling export restrictions via

interface files.

ACKNOWLEDGEMENTS
We thank Bruno C. d. S. Oliveira and Jinhao Tan for their founda-

tional work on first-class environments and supervision.

3

Jam Kabeer Ali Khan

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

REFERENCES
[1] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox,

and Eliot Miranda. 2010. Modules as Objects in Newspeak. In ECOOP 2010 -
Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June
21-25, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6183), Theo
D’Hondt (Ed.). Springer, 405–428. https://doi.org/10.1007/978-3-642-14107-2_20

[2] Luca Cardelli. 1997. Program fragments, linking, and modularization. In Proceed-
ings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Paris, France) (POPL ’97). Association for Computing Machinery,

New York, NY, USA, 266–277. https://doi.org/10.1145/263699.263735

[3] Arthur Charguéraud. 2012. The Locally Nameless Representation. Journal of
Automated Reasoning 49, 3 (2012), 363–408. https://doi.org/10.1007/s10817-011-

9225-2

[4] Pierre-Louis Curien. 1991. An Abstract Framework for Environment Machines.

Theor. Comput. Sci. 82 (1991), 389–402. https://api.semanticscholar.org/CorpusID:

41601809

[5] Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics for

multiprogrammed computations. Commun. ACM 9, 3 (March 1966), 143–155.

https://doi.org/10.1145/365230.365252

[6] A. B. Kahn. 1962. Topological sorting of large networks. Commun. ACM 5, 11

(Nov. 1962), 558–562. https://doi.org/10.1145/368996.369025

[7] Darya Kurilova, Alex Potanin, and Jonathan Aldrich. 2014. Wyvern: Impacting

Software Security via Programming Language Design. In Proceedings of the
5th Workshop on Evaluation and Usability of Programming Languages and Tools
(Portland, Oregon, USA) (PLATEAU ’14). Association for Computing Machinery,

New York, NY, USA, 57–58. https://doi.org/10.1145/2688204.2688216

[8] Peter J. Landin. 1964. The Mechanical Evaluation of Expressions. Comput. J. 6
(1964), 308–320. https://api.semanticscholar.org/CorpusID:5845983

[9] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and

Jérôme Vouillon. 2020. The OCaml system release 4.10. https://caml.inria.fr/pub/

docs/manual-ocaml/

[10] Simon Marlow (Ed.). 2010. Haskell 2010 – Language Report. www.haskell.org/

onlinereport/haskell2010/

[11] Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. 2017.

A Capability-Based Module System for Authority Control. In 31st European
Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 20:1–20:27. https://doi.

org/10.4230/LIPIcs.ECOOP.2017.20

[12] Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. Ph.D. Dissertation. Johns Hopkins
University, Baltimore, Maryland, USA.

[13] David Swasey, Tom Murphy, Karl Crary, and Robert Harper. 2006. A separate

compilation extension to standard ML. In Proceedings of the 2006 Workshop on
ML (Portland, Oregon, USA) (ML ’06). Association for Computing Machinery,

New York, NY, USA, 32–42. https://doi.org/10.1145/1159876.1159883

[14] Jinhao Tan and Bruno C. d. S. Oliveira. 2023. Dependent Merges and First-Class

Environments. In 37th European Conference on Object-Oriented Programming
(ECOOP 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 263),
Karim Ali and Guido Salvaneschi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 34:1–34:32. https://doi.org/10.4230/LIPIcs.

ECOOP.2023.34

[15] Jinhao Tan and Bruno C. d. S. Oliveira. 2024. A Case for First-Class Environments.

Proc. ACM Program. Lang. 8, OOPSLA2, Article 360 (Oct. 2024), 30 pages. https:

//doi.org/10.1145/3689800

[16] The Coq Development Team. 2024. The Coq Reference Manual – Release 8.19.0.

https://coq.inria.fr/doc/V8.19.0/refman.

4

https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1145/263699.263735
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://api.semanticscholar.org/CorpusID:41601809
https://api.semanticscholar.org/CorpusID:41601809
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/2688204.2688216
https://api.semanticscholar.org/CorpusID:5845983
https://caml.inria.fr/pub/docs/manual-ocaml/
https://caml.inria.fr/pub/docs/manual-ocaml/
www.haskell.org/onlinereport/haskell2010/
www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.4230/LIPIcs.ECOOP.2017.20
https://doi.org/10.4230/LIPIcs.ECOOP.2017.20
https://doi.org/10.1145/1159876.1159883
https://doi.org/10.4230/LIPIcs.ECOOP.2023.34
https://doi.org/10.4230/LIPIcs.ECOOP.2023.34
https://doi.org/10.1145/3689800
https://doi.org/10.1145/3689800
https://coq.inria.fr/doc/V8.19.0/refman

	Abstract
	1 Problem & Motivation
	2 Background & Related Work
	3 Approach & Uniqueness
	3.1 Syntax & Design
	3.2 First-class Environments & Modules
	3.3 Capabilities as First-Class Modules
	3.4 Separate Compilation with Unified Types and Interfaces

	4 Results & Contributions
	4.1 Implementation
	4.2 Meta-theory

	5 Ongoing and Future Work
	References

