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ABSTRACT

We present ENVCAP, a statically typed programming language
based on environment-based semantics that supports first-class
environments, capabilities, and separate compilation. By uti-
lizing the environment-based semantics of Ag [15], ENVCAP mod-
els capabilities [5] as first-class modules [15], as an alternative to
the object-capability model [12], and enables separate compilation
without extra-linguistic structures such as linksets [2].

1 PROBLEM & MOTIVATION

Programming language implementations often use environments—
maps of bindings and values—for efficiency, while theoretical calculi
rely on substitution, weakening the correctness guarantees of im-
plementations. Environment-based semantics [4, 8, 14, 15] address
this gap by incorporating environments into formal calculi, en-
abling first-class environments—environments as values that can be
manipulated. This approach provides a foundation for addressing
two key problems in language design and implementation: (1) ca-
pabilities are commonly modeled as objects [5], which introduces
complexity due to object-oriented calculi, making reasoning about
and implementing capabilities challenging; and (2) traditional ap-
proaches to separate compilation rely on external structures, such
as linksets [2], which are not part of the core language.

ENVCAP is the first programming language to address these
problems by providing two key solutions based on first-class envi-
ronments:

(1) Capabilities as First-Class Modules: ENVCAP models
capabilities as first-class modules [15] using first-class en-
vironments, offering a simpler alternative to the object-
capability model [12].

(2) Separate Compilation: ENVCAP enables separate com-
pilation entirely within the core Ag language, eliminating
the need for extra-linguistic structures such as linksets.

2 BACKGROUND & RELATED WORK

The A calculus relies on substitution-based semantics, where beta-
reduction replaces terms during application. This approach is ineffi-
cient in practice and challenging to formalize due to issues like name
capture. Environment-based semantics address these limitations by
integrating environments—maps of bindings and values—directly
into the formalization, aligning with implementation practices. The
Ag [15] and E; [14] calculi formalize this approach, unifying ex-
pressions and environments to enable first-class environments and
introducing the box construct e; > ey, which evaluates ez under
environment ej, allowing for modeling capabilities as first-class
modules.

Capabilities [5] enforce access control, commonly implemented
using the object-capability model in programming languages such

as Newspeak [1] and Wyvern [7, 11]. As their name implies, ca-
pabilities are primarily designed to restrict access to resources.
When modeled as first-class modules, capabilities can be passed as
arguments, effectively granting access to specific resources. Tan
and Oliveira [15] proposed sandboxed first-class modules as an
alternative, where sandboxed modules restrict access to the global
environment by requiring all dependencies to be explicitly passed
as arguments, allowing to model capabilities. In addition, most
capability-based languages lack formalization for separate compila-
tion, which is essential to maintain authority control.

Separate compilation enables programs to type-check and com-
pile based on interfaces rather than implementations. Cardelli [2]
introduced linksets as a formal framework for separate compila-
tion, later adapted by Standard ML [13]. In this framework, linksets
provides a structure to link code components post-compilation, for-
malized through a simple module system called bindings. However,
linksets are extra-linguistic—they are not part of the core language
and lack concrete syntax, complicating implementation.

A simpler and more generalized solution could leverage core lan-
guage constructs, where program fragments act as abstractions over
interfaces, and interfaces are unified with types [14]. For instance,
if component A is imported by component B, it can be represented
as A(interface A).B. Using first-class environments in A, ENVCAP
enables separate compilation within the core language, eliminating
the need for extra-linguistic mechanisms. Additionally, Cardelli’s
framework lacks support for first-class modules. This work extends
Cardelli’s framework by replacing linksets with constructs from the
Ag calculus, offering a more expressive and streamlined solution.

3 APPROACH & UNIQUENESS

The semantics of ENVCAP are derived from Ag via elaboration and
syntax design is inspired by OCaml [9], Wyvern [7, 11], and Ag.

Fragment U :=program (S, I, R, E, A)

Authority S == @pure | @resource

Import I:= - |importl:A, I

Requirements R:= - |requirel: A, R

Expressions E:=env|E.n|i|e|AA. E| with Eq in E,

| E\Ez | Ev;Ez | Ev,Ex | {¢=E} | E£
| function £ A : BE | struct A E | struct E
| E1 % Ep | functor £ A : BE | module £ : BE
|letx E; | open Ey E; | E: A
Types ABT:=Int|e|A— B|{t:A}
| A& B | Sig[A, B]

Figure 1: Core ENVCAP syntax.
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3.1 Syntax & Design

Figure 1 presents the core syntactic constructs of ENVCAP and
we discuss the most relevant constructs. A fragment (program
S I R E A) represents an implementation paired with an in-
terface A, where interfaces desugar into types. First-class modules
include struct A E (taking A as input) and struct E (syntac-
tic sugar for E). The construct module ¢ : B E desugars into a
record {¢ = E : B}, while functor ¢ A : B E desugars into
{¢ =struct A (E: B)}. Module application (E; * E3) requires E;
to have type Sig[A, BJ].The open E; E3 construct requires E; to
be of record type and loads its contents into the current context via
elaboration. The reification operator env retrieves the current envi-
ronment. Sequences Eq; E; elaborate to dependent merges (e , ez)
in Ag, which is helpful to model a sequence of declarations, e.g.
{x =1}, {y = x + x}, allowing E; to depend on E;. Pairs (Ej, Ez)
are non-dependent and generalized to support tuples, but elaborate
to eq , ez in Ag. The construct function ¢ A : B E elaborates into
fix A — B.E, enabling recursion.

3.2 First-class Environments & Modules

We illustrate first-class environments and modules with an example.
First, we define a @pure fragment with UTIL and MATH interfaces:

1 @pure module Examplel

» interface UTIL {val diff :
s interface MATH {val fact :

Int};
Int -> Int};

Next, we define a functor (a parameterized module) that desug-
ars into a labeled record with an anonymous first-class module
(struct AE):

1 functor math (util: UTIL) : MATH {
(* loads contents into environment, e.g. diff x)
open util;
function fact(n: Int): Int {
if (n == @) then 1 else n % fact(n - diff)
}

3

Finally, we use the with E;1 Ez construct to evaluate E; in envi-
ronment E;. We create a new environment containing the current
environment (extracted via the env operator), the result of applying
the math functor to an anonymous module of type UTIL, and a
new binding for x. The computation proceeds under this new envi-
ronment, computing factorials for both the old and new values of
x:

let x = 5;
2 with
3 ({prevEnv = env}; math(struct {let diff = 1}); {x = 63})
in { let resultOld = fact(prevEnv.x); (*x 120 =)
let resultNew = fact(x) (x 720 *)}

This example demonstrates ENVCAP’s support for first-class
modules and environments, showcasing its expressive power.

3.3 Capabilities as First-Class Modules

Capabilities in ENVCAP are modeled using sandboxed first-class
modules, which enforce controlled access by requiring all re-
sources to be explicitly passed as parameters, and authority an-
notations (@pure and @resource) inspired by Wyvern [11]. The
modules are sandboxed via elaboration to € > AA.e in Ag, so com-
putation runs under empty (€) environment and hence, resources

» require (U:

-
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are only passed via parameters. A @resource fragment can im-
port any fragment, while a @pure fragment can only import other
@pure fragments. If a @pure fragment requires functionality from
a @resource fragment, it must declare it as a requirement rather
than an import, ensuring explicit capability propagation. ENVCAP
supports the use of interface files in requirements, so interfaces of
required fragments can be utilized for separate compilation. Only
valid imports are linked and the validity of imports with author-
ity annotations is checked during elaboration to Ag, maintaining
authority control.

We present an example of how capabilities are propagated in
ENVCAP, consisting of a pure fragment B and a resource fragment
A.

@pure module B
System.Utils);
let mapList =
U.Map(\(x:Int) => {x + 1}, [1, 2, 3])

Fragment B is a @oure module requiring System.Utils as a ca-
pability. Since System.Utils is a resource, it cannot be imported
directly. Instead, it is passed as a parameter, ensuring explicit capa-
bility propagation.

@resource module A

» import System.Utils B;

3

let result = B(System.Utils).maplList

Fragment A, a @resource module, imports System.Utils and
instantiates B with it. The mapList function is extracted and as-
signed to the result. Here, System.Utils acts as a capability: A
has the authority to access and pass it to B, which requires this
capability.

3.4 Separate Compilation with Unified Types
and Interfaces

We enable separate compilation by unifying interfaces and types,
where an implementation file is treated as an abstraction over the
interfaces of its imports at the core level of Ag. The linking mech-
anism is also defined at the core level, eliminating the need for
external structures.

3.4.1  Example. To illustrate this, we adapt one of Cardelli’s exam-
ples [2] in ENVCAP. For clarity, we present an example within a
single file.

@pure module Example3

2 interface N { val x : Int }
module n : N {
let x = 3

5}

n is a module that implements interface N.Next, we define a
functor mthat implements interface M and takes an implemen-
tation of N as input; this is similar to an import at the fragment
level.

interface M {
val f : Int -> Int;
val m : Int

I3
5 functor m (n: N) : M {
open n;
let f = \(y: Int) =>y + x;
let m = f(x)

3
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Capabilities as First-Class Modules with Separate Compilation

In this example, the functor m represents a program fragment
that imports the module n with the interface N. In ENVCAP, inter-
faces are treated as types, so inter face N and inter face M desugar
into record types {N : {x : Int}} and {M : {f : Int — Int}&{m :
Int}}, respectively.

3.4.2  Compilation: ENVCAP ~> Ag. In our setting, the elaboration
from ENVCAP to Ag is analogous to Cardelli’s compilation of bind-
ings to linksets. Modules and functors elaborate into records and
boxed abstractions. In this example, specifically:

modulen: {n:{x:Int}} ~ {n={x=3}: {x:Int}}
Sfunctor m: {m: sig[{n : {x : Int}},{f : Int — Int}&{m : Int}]}

~{m=e>Mn:{x:Int}.(f=..,m=(2.f)(?.n.x)) : type..}

For simplicity, we omit the elaboration of the open (given in
Figure 2) statement, which essentially loads the contents of module
n ({x = 3}) into the environment.

3.4.3 Linking. Once elaborated to Ag, the expressions can be linked.
To ensure correct linking order, we use Kahn’s [6] algorithm for
topological sorting to determine module dependencies and linking
order. It enables the detection of cyclic dependencies that are not
allowed in ENVCAP for both imports and requirements for the sake
of simplicity. The linking process proceeds as follows.

(1) Initial State: L = e.

(2) Linkn:L—> L' =¢,{n={x=3}:{x:Int}}.

(3) Linkm: L’ > L' ,{m=¢,{n={x=3}}>(f=..,m=
?.f)(?.nx)) : {f : Int » Int}&{m : Int}}.

When no further linking steps are possible (L <), the resulting
structure, with dependent merges (,), contains fully linked frag-
ments that can be executed individually.

4 RESULTS & CONTRIBUTIONS

The main results achieved are the following: 1) Implementation
of the ENVCAP interpreter in Haskell[10]; 2) Formalization of
type-directed elaboration ENVCAP ~» Ag in Rocq [16].

4.1 Implementation

The ENVCAP interpreter, implemented in ~5000 lines of Haskell,
supports recursion, algebraic datatypes, and other key features. Its
architecture comprises parsing, locally nameless transformation,
desugaring, elaboration, and execution. The locally nameless repre-
sentation [3] simplifies implementation by avoiding ambiguous en-
vironment lookups, which Ag forbids. Furthermore, the interpreter
produces . epc files containing Ar expressions, enabling indepen-
dent linking and execution, ensuring flexibility by decoupling from
specific code generation.

4.2 Meta-theory

Type-directed elaboration translates core ENVCAP to A expres-
sions while preserving type consistency. Currently, the proof ex-

cludes the compilation of fragments of the form program (S, I, R, E, A);

the key elaboration rules are shown in Figure 2.

EL-MODULE
e&AFE:B~ e

T+ struct AE : Sig[A,B] ~ e> A|Al.e

EL-MODAPP

THE;:Sig[ABl~ e TrE:A~ e

T'FE1 % Eog:B~> eqey

EL-CLOS

TrFE :I1~ e TDN&AFE;:B~ e

T'r <E1,/1A.E2> tA—> B~ e > /1|A|.62

EL-NON-DEPENDENT-MERGE
THE1: A1~ e THEy: Ay~ ey

CrEEy: At & Az~ (AT].(0> e1), (1> e2)) ?

EL-OPEN
THE :{t: A}~ e

FT'rE1l:A~ el T&A+ Ey : B~ eg

T+ open E1 Ez : B~ (A]|Al.e2) (e1.l)
where |.| is simply translation of ENVCAP types to Ag types.

Figure 2: Elaboration: T + ENVCAP : A ~ Ag

The theorems formalized in Rocq are the following:
THEOREM 1 (TYPE PRESERVATION).
ifTFE:A~> e, then|T|Fe:|A|
THEOREM 2 (UNIQUENESS OF TYPE INFERENCE).

ifTFE:A; ~ e andT+E:Ay ~ ey, then A; = Aj.

THEOREM 3 (UNIQUENESS OF ELABORATION).
ifTFE:Aj~ e andT +E: Ay ~ ey, theney = e.

Significance. ENVCAP presents first-class modules as an alterna-
tive to objects and enables separate compilation without external
constructs, such as linksets. This simplifies the implementation of
programming languages by providing simpler alternatives using
first-class environments and environment-based semantics.

5 ONGOING AND FUTURE WORK

The ENvcaP project aims to formalize separate compilation in Rocg,
based on Cardelli’s framework. Inspired by WYVERN, it enforces
authority safety for capability guarantees. To enhance modularity,
it introduces subtyping support, enabling export restrictions via
interface files.
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